52 resultados para Biomass hydrolysis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum (T. harzianum) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from T. harzianum (Th Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of Th Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of Th Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of Th Cel7A at different pH and temperature conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid in vitro methods for measuring digestibility may be useful in analysing aqua feeds if the extent and limits of their application are clearly defined. The pH-stat protein digestibility routine with shrimp hepatopancreas enzymes was previously related to apparent protein digestibility with juvenile Litopenaeus vannamei fed diets containing different protein ingredients. The potential of the method to predict culture performance of shrimp fed six commercial feeds (T3, T4, T5, T6, T7 and T8) with 350 g kg(-1) declared crude-protein content was assessed. The consistency of results obtained using hepatopancreas enzyme extracts from either pond or clear water-raised shrimp was further verified in terms of reproducibility and possible diet history effects upon in vitro outputs. Shrimps were previously acclimated and then maintained over 56 days (initial mean weight 3.28 g) on each diet in 500-L tanks at 114 ind m(-2), clear water closed system with continuous renewal and mechanical filtering (50 mu m), with four replicates per treatment. Feeds were offered four times daily (six days a week) delivered in trays at feeding rates ranging from 4.0% to 7.0% of stocked shrimp biomass. Feed was accessible to shrimp 4 h daily for 1-h feeding period after which uneaten feed was recovered. Growth and survival were determined every 14 days from a sample of 16 individuals per tank. Water quality was monitored daily (pH, temperature and salinity) and managed by water back flushing filter cleaning every 7-10 days. Feeds were analysed for crude protein, gross energy, amino acids and pepsin digestibility. In vitro pH-stat degree of protein hydrolysis (DH%) was determined for each feed using hepatopancreas enzyme extracts from experimental (clear water) or pond-raised shrimp. Feeds resulted in significant differences in shrimp performance (P < 0.05) as seen by the differences in growth rates (0.56-0.98 g week(-1)), final weight and feed conversion ratio (FCR). Shrimp performance and in vitro DH% with pond-raised shrimp enzymes showed significant correlation (P < 0.05) for yield (R-2 = 0.72), growth rates (R-2 = 0.72-0.80) and FCR (R-2 = -0.67). Other feed attributes (protein : energy ratio, amino acids, true protein, non-protein nitrogen contents and in vitro pepsin digestibility) showed none or limited correlation with shrimp culture performance. Additional correlations were found between growth rates and methionine (R-2 = 0.73), FCR and histidine (R-2 = -0.60), and DH% and methionine or methionine+cystine feed contents (R-2 = 0.67-0.92). pH-stat assays with shrimp enzymes generated reproducible DH% results with either pond (CV <= 6.5%) or clear water (CV <= 8.5%) hepatopancreas enzyme sources. Moreover, correlations between shrimp growth rates and feed DH% were significant regardless of the enzyme origin (pond or clear water-raised shrimp) and showed consistent R-2 values. Results suggest the feasibility of using standardized hepatopancreas enzyme extracts for in vitro protein digestibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land degradation causes great changes in the soil biological properties. The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity. The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation (NV), moderately degraded land (LDL), highly degraded land (HDL) and land under restoration for four years (RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil. Soil samples were collected at 0-10 cm depth. Soil organic carbon (SOC), soil microbial biomass C (MBC) and N (MBN), soil respiration (SR), and hydrolysis of fluorescein diacetate (FDA) and dehydrogenase (DHA) activities were analyzed. After two years of evaluation, soil MBC, MBN, FDA and DHA had higher values in the NV, followed by the RL. The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV. However, after land restoration, the MBC and MBN increased approximately 5-fold and 2-fold, respectively, compared with the HDL. The results showed that land degradation produced a strong decrease in soil microbial biomass. However, land restoration may promote short- and long-term increases in soil microbial biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO(2) wafers at 60 degrees C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (I(C)), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of sugar cane bagasse cellulose saccharification and the decomposition of glucose under extremely low acid (ELA) conditions, (0.07%), 0.14%, and 0.28% H2SO4, and at high temperatures were investigated using batch reactors. The first-order rate constants were obtained by weight loss, remaining glucose, and fitting glucose concentration profiles determined with HPLC using the Saeman model. The maximum glucose yields reached 67.6% (200 degrees C, 0.07% H2SO4, 30 min), 69.8% (210 degrees C, 0.14% H2SO4, 10 min), and 67.3% (210 degrees C, 0.28% H2SO4, 6 min). ELA conditions produced remarkable glucose yields when applied to bagasse cellulose. The first-order rate constants were used to calculate activation energies and extrathermodynamic parameters to elucidate the reaction mechanism under ELA conditions. The effect of acid concentration on cellulose hydrolysis and glucose decomposition was also investigated. The observed activation energies and reaction orders with respect to hydronium ion for cellulose hydrolysis and glucose decomposition were 184.9 and 124.5 kJ/mol and 1.27 and 0.75, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is inserted into the broad context of the upgrading of lignocellulosic fibers. Sisal was chosen in the present study because more than 50% of the world's sisal is cultivated in Brazil, it has a short life cycle and its fiber has a high cellulose content. Specifically, in the present study, the subject addressed was the hydrolysis of the sisal pulp, using sulfuric acid as the catalyst. To assess the influence of parameters such as the concentration of the sulfuric acid and the temperature during this process, the pulp was hydrolyzed with various concentrations of sulfuric acid (30-50%) at 70 A degrees C and with 30% acid (v/v) at various temperatures (60-100 A degrees C). During hydrolysis, aliquots were withdrawn from the reaction media, and the solid (non-hydrolyzed pulp) was separated from the liquid (liquor) by filtering each aliquot. The sugar composition of the liquor was analyzed by HPLC, and the non-hydrolyzed pulps were characterized by viscometry (average molar mass), and X-ray diffraction (crystallinity). The results support the following conclusions: acid hydrolysis using 30% H2SO4 at 100 A degrees C can produce sisal microcrystalline cellulose and the conditions that led to the largest glucose yield and lowest decomposition rate were 50% H2SO4 at 70 A degrees C. In summary, the study of sisal pulp hydrolysis using concentrated acid showed that certain conditions are suitable for high recovery of xylose and good yield of glucose. Moreover, the unreacted cellulose can be targeted for different applications in bio-based materials. A kinetic study based on the glucose yield was performed for all reaction conditions using the kinetic model proposed by Saeman. The results showed that the model adjusted to all 30-35% H2SO4 reactions but not to greater concentrations of sulfuric acid. The present study is part of an ongoing research program, and the results reported here will be used as a comparison against the results obtained when using treated sisal pulp as the starting material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response surface methodology (RSM), based on a 2(2) full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 degrees C for 90 min.(-) Both DEO concentration and corn stover moisture content were statistically significant at 99% confidence level. The maximum xylose recovery by the response surface methodology was achieved employing both DEO concentration and corn stover moisture at near their highest levels area. We amplified this area by using an overlay plot as a graphical optimization using a response of xylose recovery more than 80%. The mathematical statistical model was validated by testing a specific condition in the satisfied overlay plot area. Experimentally, a maximum xylose recovery (81.2%) was achieved by using initial corn stover moisture of 60% and a DEO concentration of 4% w/w. The mathematical statistical model showed that xylose recovery increases during DEO corn stover acid hydrolysis as the corn stover moisture level increases. This observation could be important during the harvesting of corn before it is fully dried in the field. The corn stover moisture was an important variable to improve xylose recovery by DEO acid hydrolysis. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole cells of the marine fungi Aspergillus sydowii Gc12, Penicillium raistrickii Ce16, P. miczynskii Gc5, and Trichoderma sp. Gc1, isolated from marine sponges of the South Atlantic Ocean (Brazil), have been screened for the enzymatic resolution of (+/-)-2-(benzyloxymethyl)oxirane (benzyl glycidyl ether; 1). Whole cells of A. sydowii Gc12 catalyzed the enzymatic hydrolysis of (R,S)-1 to yield (R)-1 with an enantiomeric excess (ee) of 24-46% and 3-(benzyloxy)propane-1,2-diol (2) with ee values < 10%. In contrast, whole cells of Trichoderma sp. Gc1 afforded (S)-1 with ee values up to 60% and yields up to 39%, together with (R)-2 in 25% yield and an ee of 32%. This is the first published example of the hydrolysis of 1 by whole cells of marine fungi isolated from the South Atlantic Ocean. The hydrolases from the two studied fungi exhibited complementary regioselectivity in opening the epoxide ring of racemic 1, with those of A. sydowii Gc12 showing an (S) preference and those of Trichoderma sp. Gc1 presenting an (R) preference for the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquafeed production faces global issues related to availability of feed ingredients. Feed manufacturers require greater flexibility in order to develop nutritional and cost-effective formulations that take into account nutrient content and availability of ingredients. The search for appropriate ingredients requires detailed screening of their potential nutritional value and variability at the industrial level. In vitro digestion of feedstuffs by enzymes extracted from the target species has been correlated with apparent protein digestibility (APD) in fish and shrimp species. The present study verified the relationship between APD and in vitro degree of protein hydrolysis (DH) with Litopenaeus vannamei hepatopancreas enzymes in several different ingredients (n = 26): blood meals, casein, corn gluten meal, crab meal, distiller`s dried grains with solubles, feather meal, fish meals, gelatin, krill meals, poultry by-product meal, soybean meals, squid meals and wheat gluten. The relationship between APD and DH was further verified in diets formulated with these ingredients at 30% inclusion into a reference diet. APD was determined in vivo (30.1 +/- 0.5 degrees C, 32.2 +/- 0.4%.) with juvenile L vannamei (9 to 12 g) after placement of test ingredients into a reference diet (35 g kg(-1) CP: 8.03 g kg(-1) lipid; 2.01 kcal g(-1)) with chromic oxide as the inert marker. In vitro DH was assessed in ingredients and diets with standardized hepatopancreas enzymes extracted from pond-reared shrimp. The DH of ingredients was determined under different assay conditions to check for the most suitable in vitro protocol for APD prediction: different batches of enzyme extracts (HPf5 or HPf6), temperatures (25 or 30 degrees C) and enzyme activity (azocasein): crude protein ratios (4 U: 80 mg CP or 4 U: 40 mg CP). DH was not affected by ingredient proximate composition. APD was significantly correlated to DH in regressions considering either ingredients or diets. The relationships between APD and DH of the ingredients could be suitably adjusted to a Rational Function (y = (a + bx)/(1 + cx + dx2), n = 26. Best in vitro APD predictions were obtained at 25 degrees C, 4 U: 80 mg CP both for ingredients (R(2) = 0.86: P = 0.001) and test diets (R(2) = 0.96; P = 0.007). The regression model including all 26 ingredients generated higher prediction residuals (i.e., predicted APD - determined APD) for corn gluten meal, feather meal. poultry by-product meal and krill flour. The remaining test ingredients presented mean prediction residuals of 3.5 points. A model including only ingredients with APD>80% showed higher prediction precision (R(2) = 0.98: P = 0.000004; n = 20) with average residual of 1.8 points. Predictive models including only ingredients from the same origin (e.g., marine-based, R(2) = 0.98; P = 0.033) also displayed low residuals. Since in vitro techniques have been usually validated through regressions against in vivo APD, the DH predictive capacity may depend on the consistency of the in vivo methodology. Regressions between APD and DH suggested a close relationship between peptide bond breakage by hepatopancreas digestive proteases and the apparent nitrogen assimilation in shrimp, and this may be a useful tool to provide rapid nutritional information. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial and temporal variation of microphytobenthic biomass in the nearshore zone of Martel Inlet (King George Island, Antarctica) was estimated at several sites and depths (10-60 m), during three summer periods (1996/1997, 1997/1998, 2004/2005). The mean values were inversely related to the bathymetric gradient: higher ones at 10-20 m depth (136.2 +/- A 112.5 mg Chl a m(-2), 261.7 +/- A 455.9 mg Phaeo m(-2)), intermediate at 20-30 m (55.6 +/- A 39.5 mg Chl a m(-2), 108.8 +/- A 73.0 mg Phaeo m(-2)) and lower ones at 40-60 m (22.7 +/- A 23.7 mg Chl a m(-2), 58.3 +/- A 38.9 mg Phaeo m(-2)). There was also a reduction in the Chl a/Phaeo ratio with depth, from 3.2 +/- A 3.2 (10-20 m) to 0.7 +/- A 1.0 (40-60 m), showing a higher contribution of senescent phytoplankton and/or macroalgae debris at the deeper sites and the limited light flux reaching the bottom. Horizontal differences found in the biomass throughout the inlet could not be clearly related to hydrodynamics or proximity to glaciers, but with sediment characteristics. An inter-summer variation was observed: the first summer presented the highest microphytobenthic biomass apparently related to more hydrodynamic conditions, which causes the deposition of allochthonous material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananeia-Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l(-1) and 20.0 mu M, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 mu g Cl(-1) h(-1)) during the dry season. Primary production rates (PP) positively correlated with salinity and euphoric depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 mu g Cl(-1) and 7.9 mu g Cl(-1) h-1, respectively. Despite such a high BP, bacterial abundance remained <2 x 106 cells ml(-1), indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d(-1). BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (< 40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha(-1) (range 6.6 to 112.4) to 8.0 Mg ha(-1) (-2.5 to 23.0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cultivation of sisal, a plant with a short growth cycle, is highly productive in Brazil. This work is part of extensive research in which sisal is valued. In these studies, sisal fibers are used in the preparation of bio-based composites and in the derivatization of the pulp, including posterior preparation of films. This study aimed to examine the use of sisal pulp in the production of bioethanol, which can potentially be a high efficiency process because of the cellulose content of this fiber. A previous paper addressed the hydrolysis of sisal pulp using sulfuric acid as a catalyst. In the present study, the influence of the mercerization process on the acid hydrolysis of sisal pulp was evaluated. Mercerization was achieved in a 20% wt NaOH solution, and the cellulosic pulp was suspended and vigorously mixed for 1, 2 and 3 h, at 50 A degrees C. The previously characterized mercerized pulps were hydrolyzed (100 A degrees C, 30% H2SO4, v/v), and the results are compared with those obtained for unmercerized pulp (described in a companion paper). The starting sample was characterized by viscometry, alpha-cellulose content, crystallinity index and scanning electron microscopy. During the reactions, aliquots were withdrawn, and the liquor was analyzed by HPLC. The residual pulps (non-hydrolyzed) were also characterized by the techniques described for the initial sample. The results revealed that pretreatment decreases the polyoses content as well as causes a decrease of up to 23% in the crystallinity and up to 21% in the average molar mass of cellulose after 3 h of mercerization. The mercerization process proved to be very important to achieve the final target. Under the same reaction conditions (30% and 100 A degrees C, 6 h), the hydrolysis of mercerized pulp generated yields of up to 50% more glucose. The results of this paper will be compared with the results of subsequent studies obtained using other acids, and enzymes, as catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lianas play a key role in forest structure, species diversity, as well as functional aspects of tropical forests. Although the study of lianas in the tropics has increased dramatically in recent years, basic information on liana communities for the Brazilian Atlantic Forest is still scarce. To understand general patterns of liana abundance and biomass along an elevational gradient (0-1,100 m asl) of coastal Atlantic Forest, we carried out a standard census for lianas a parts per thousand yen1 cm in five 1-ha plots distributed across different forest sites. On average, we found a twofold variation in liana abundance and biomass between lowland and other forest types. Large lianas (a parts per thousand yen10 cm) accounted for 26-35% of total liana biomass at lower elevations, but they were not recorded in montane forests. Although the abundance of lianas displayed strong spatial structure at short distances, the present local forest structure played a minor role structuring liana communities at the scale of 0.01 ha. Compared to similar moist and wet Neotropical forests, lianas are slightly less abundant in the Atlantic Forest, but the total biomass is similar. Our study highlights two important points: (1) despite some studies have shown the importance of small-scale canopy disturbance and support availability, the spatial scale of the relationships between lianas and forest structure can vary greatly among tropical forests; (2) our results add to the evidence that past canopy disturbance levels and minimum temperature variation exert influence on the structure of liana communities in tropical moist forests, particularly along short and steep elevational gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The Amazon represents an area of 61% of Brazilian territory and is undergoing major changes resulting from disorderly economic development, especially the advance of agribusiness. Composition of the atmosphere is controlled by several natural and anthropogenic processes, and emission from biomass burning is one with the major impact on human health. The aim of this study was to evaluate genotoxic potential of air pollutants generated by biomass burning through micronucleus assay in exfoliated buccal cells of schoolchildren in the Brazilian Amazon region. Methods: The study was conducted during the dry seasons in two regions of the Brazilian Amazon. The assay was carried out on buccal epithelial cells of 574 schoolchildren between 6-16 years old. Results: The results show a significant difference between micronucleus frequencies in children exposed to biomass burning compared to those in a control area. Conclusions: The present study demonstrated that in situ biomonitoring using a sensitive and low cost assay (buccal micronucleus assay) may be an important tool for monitoring air quality in remote regions. It is difficult to attribute the increase in micronuclei frequency observed in our study to any specific toxic element integrated in the particulate matters. However, the contribution of the present study lies in the evidence that increased exposure to fine particulate matter generates an increased micronuclei frequency in oral epithelial cells of schoolchildren.